Scattered Data Fitting with Nonnegative Preservation using Bivariate Splines and Its Application

نویسندگان

  • Ming-Jun Lai
  • Christof Meile
چکیده

We study how to use bivariate splines for scattered data interpolation and fitting with preservation of non-negativity of the data values. We propose a minimal energy method to find a C1 smooth interpolation/fitting of non-negative data values from scattered locations based on bivariate splines. We establish the existence and uniqueness of the minimizer under mild assumptions on the data locations and triangulations. We then use Uzawa’s algorithm to compute the nonnegative preserving interpolatory or fitting spline surface by linearizing the nonnegativity conditions. The convergence of the algorithm will be shown under a sufficient condition that there is a nonnegative preserving spline interpolant satisfying the linearized nonnegativity conditions. Some artificial examples and one real life example demonstrate that our algorithm works well and improves the nonnegativity of the spline surfaces even without having the sufficient condition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scattered data interpolation with nonnegative preservation using bivariate splines and its application

Article history: Received 29 April 2014 Received in revised form 16 January 2015 Accepted 20 February 2015 Available online 5 March 2015

متن کامل

The convergence of three L1 spline methods for scattered data interpolation and fitting

The convergences of three L1 spline methods for scattered data interpolation and fitting using bivariate spline spaces are studied in this paper. That is, L1 interpolatory splines, splines of least absolute deviation, andL1 smoothing splines are shown to converge to the given data function under some conditions and hence, the surfaces from these three methods will resemble the given data values...

متن کامل

Scattered Data Fitting on Surfaces Using Projected Powell-Sabin Splines

We present C methods for either interpolating data or for fitting scattered data associated with a smooth function on a two-dimensional smooth manifold Ω embedded into R. The methods are based on a local bivariate Powell-Sabin interpolation scheme, and make use of local projections on the tangent planes. The data fitting method is a two-stage method. We illustrate the performance of the algorit...

متن کامل

Interpolation and Scattered Data Fitting on Manifolds using Projected Powell-Sabin Splines

We present methods for either interpolating data or for fitting scattered data on a two-dimensional smooth manifold Ω. The methods are based on a local bivariate Powell-Sabin interpolation scheme, and make use of a family of charts {(Uξ , φξ)}ξ∈Ω satisfying certain conditions of smooth dependence on ξ. If Ω is a C2-manifold embedded into R3, then projections into tangent planes can be employed....

متن کامل

A Domain Decomposition Method for Computing Bivariate Spline Fits of Scattered Data

A domain decomposition method for solving large bivariate scattered data fitting problems with bivariate minimal energy, discrete least-squares, and penalized least-squares splines is described. The method is based on splitting the domain into smaller domains, solving the associated smaller fitting problems, and combining the coefficients to get a global fit. Explicit error bounds are establish...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014